Singularities of Nonconfluent Hypergeometric Functions in Several Variables

نویسندگان

  • Mikael Passare
  • Timur Sadykov
چکیده

The paper deals with singularities of nonconfluent hypergeometric functions in several variables. Typically such a function is a multi-valued analytic function with singularities along an algebraic hypersurface. We describe such hypersurfaces in terms of amoebas and the Newton polytopes of their defining polynomials. In particular, we show that allA-discriminantal hypersurfaces (in the sense of Gelfand, Kapranov and Zelevinsky) have solid amoebas, that is, amoebas with the minimal number of complement components. Mathematics Subject Classification (2000): 32A05, 32A20, 33C70

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Subclass of Analytic Functions Associated with Hypergeometric Functions

In the present paper, we have established sufficient conditions for Gaus-sian hypergeometric functions to be in certain subclass of analytic univalent functions in the unit disc $mathcal{U}$. Furthermore, we investigate several mapping properties of Hohlov linear operator for this subclass and also examined an integral operator acting on hypergeometric functions.

متن کامل

Resonance Equals Reducibility for A-hypergeometric Systems

Classical theorems of Gel’fand et al. and recent results of Beukers show that nonconfluent Cohen–Macaulay A-hypergeometric systems have reducible monodromy representation if and only if the continuous parameter is A-resonant. We remove both the confluence and Cohen–Macaulayness conditions while simplifying the proof.

متن کامل

Some Classes of Generating Relations Associated with a Family of the Generalized Gauss Type Hypergeometric Functions

In recent years, several interesting families of generating functions for various classes of hypergeometric and generalized hypergeometric functions in one, two and more variables were investigated systematically. Here, in this sequel, we aim at establishing several (presumably) new generating relations for the generalized Gauss type hypergeometric functions which are introduced by means of som...

متن کامل

Integral Properties of Zonal Spherical Functions, Hypergeometric Functions and Invariant

Some integral properties of zonal spherical functions, hypergeometric functions and invariant polynomials are studied for real normed division algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004